1. $2Mg + O_2 \rightarrow 2MgO \checkmark$ (i) ALLOW multiples. Correct species must be seen **IGNORE** state symbols 1 (ii) Fizzes **OR** bubbles **OR** gas produced **OR** effervescing \checkmark **DO NOT ALLOW** 'carbon dioxide gas produced' DO NOT ALLOW 'hydrogen produced' without 'gas' Mg dissolves **OR** Mg disappears **OR** a solution is formed \checkmark ALLOW 'it for Mg' **IGNORE** Mg reacts **IGNORE** temperature change **IGNORE** steam produced 2 (iii) Quicker **OR** more vigorous **OR** gets hotter

MUST be a comparison of a reaction observation, not just 'more reactive' ALLOW any comparison of greater rate including more bubbles etc. DO NOT ALLOW more gas produced

2. (a) BaO ✓

 $Ba_3N_2 \checkmark$

Treat any shown charges as working and ignore. Treat B for Ba as a slip

(b) (i) $\frac{0.11}{137.3}$

mark is for the **working out** which **MUST** lead to the correct answer of 8×10^{-4} up to calculator value

(ii) 19.2
 OR
 calculated answer to (b)(i) × 24000 ✓
 ALLOW 19 up to calculator value.

1

2

1

1

[4]

- (iii) 8.0×10^{-3} OR calculated answer to (b)(i) $\times 10 \checkmark$ *ALLOW* 8.01 $\times 10^{-3}$ up to calculator value
- (iv) any pH > 7 but <15 \checkmark ALLOW a correct range of pH.
- (c) Less barium to react OR some barium has already reacted ✓
 ALLOW less volume because contains some BaO or Ba₃N₂

(d) reactivity increases (down the group) \checkmark

atomic radii increase **OR** there are more shells \checkmark

there is **more** shielding **OR more** screening \checkmark

the nuclear attraction decreases **OR** Increased shielding and distance outweigh the increased nuclear charge \checkmark

easier to remove (outer) electrons OR
ionisation energy decreases ✓
USE annotations with ticks, crosses, ecf, etc for this part.
DO NOT ALLOW more orbitals OR more sub-shells
'More' is essential
ALLOW 'more electron repulsion from inner shells'
ALLOW 'nuclear pull'
IGNORE any reference to 'effective nuclear charge'
ALLOW easier to form positive ion

5

1

1

1

[12]

- 3. CaCO₃(s) → CaO(s) + CO₂(g) equation ✓ state symbols ✓
 state symbols are dependent on correct formulae of CaCO₃, CaO and CO₂
 DO NOT ALLOW the 'equation mark' if O₂ is seen on both sides (but note that the 'state symbol mark' may still be accessible)
 [2]
 - (i) $Ca(OH)_2 \checkmark$ *IGNORE charges, even if wrong*

4.

(ii) $Ca(NO_3)_2 \checkmark$ IGNORE charges, even if wrong

[2]

1

1

5. (i) because Ca has changed from 0 to +2 (1) and H has changed from +1 to 0 (1) 2 Calcium reacts with water producing (ii) hydrogen/H₂/calcium/hydroxide/Ca(OH)₂ (1) (i.e. one product) $Ca(s) + H_2O(l) \rightarrow Ca(OH)_2(aq) + H_2(g)$ (1) (i.e. full equation) Equation would subsume both two marks 2 [4] loss (of electrons) \checkmark 6. (i) 1 (ii) Ba 🗸 $0 \rightarrow (+)2 \checkmark (\text{accept } 2+)$ 2 [3] 7. (i) Oxidation state goes from 0 in $O_2 \checkmark$ $\rightarrow -2$ in MgO \checkmark

(ii)

or with Mg full shell. correct dot and cross√; correct charges√

[4]

2

2

8.	(i)	MgO has reacted with $CO_2 \checkmark 1$		
	(ii)	Solid dissolves / disappears Fizzing / bubbles MgO + 2HCl \rightarrow MgCl ₂ + H ₂ O MgCO ₂ + 2HCl \rightarrow MgCl ₂ + CO ₂ + H ₂ O	2	
		both reactions form magnesium chloride/MgC l_2	3	[6]
9.	(i)	hydrogen / H ₂ \checkmark	1	
	(ii)	$Sr + 2H_2O \rightarrow Sr(OH)_2 + H_2 \checkmark$	1	
	(iii)	different numbers of moles/atoms/ different A_r values so different number of moles of H_2 /more moles of Ca	✓ a√ 2	
	<i>(</i> ;)	(i.e. an allempt to quantify alfference)	2	
	(1V)	$\delta - 14 \checkmark$	1	[5]

10.	(i)	Ca ⁺ (g) → Ca ²⁺ (g) + e ⁻ Equation with correct charges and 1 electron lost \checkmark state symbols \checkmark '-' not required on 'e'	2	
	(ii)	same number of protons or same nuclear charge attracting less electrons/ electron removed from an ion/ less electron-electron repulsion (not less shielding)/ ion is smaller	1	
	(iii)	atomic radii of Sr > atomic radii of Ca/ Sr has electrons in shell further from nucleus than Ca/ Sr has electrons in a higher energy level/ Sr has more shells \checkmark Therefore less attraction \checkmark Sr has more shielding than Ca \checkmark ('more' is essential)	3	
		increased nuclear charge is outweighed / despite increased nuclear chargeby at least one of the factors above \checkmark		[6]
11.	CaCo state	$O_3 \rightarrow CaO + CO_2 \checkmark$ symbols not required		[1]
12.	(a)	Ca(s) +2 \checkmark HCl(aq)CaCl ₂ (aq) + .H ₂ (g). \checkmark (g) not required for H ₂	2	
	(b)	In Ca, oxidation state = $0 \checkmark$ and In CaCl ₂ , oxidation state = $+2 \checkmark$ Oxidation number increases from Ca to CaCl ₂	2	[4]

13.	(i)	moles $HCl = 2.0 \times 50/1000 = 0.10$	1	
	(ii)	moles $Ca = \frac{1}{2} \times \text{moles HC}l = 0.050 \checkmark$ mass $Ca = 40.1 \times 0.050 = 2.00 \text{ g} / 2.005 \text{ g} \checkmark$ (accept $40 \times 0.050 = 2.0 \text{ g}$) (mass Ca of 4.0 g would score 1 mark as 'ecf' as molar ratio has not been identified)	2	
	(iii)	Ca has reacted with water \checkmark Ca + 2H ₂ O \rightarrow Ca(OH) ₂ + H ₂ $\checkmark \checkmark$ <i>state symbols not required</i>		
		1 st mark for H_2 2nd mark is for the rest of the balanced equation	3	[6]
14.	(a)	$\operatorname{RaC}l_2 \checkmark$	1	
	(b)	Reduction is gain of electrons/decrease in oxidation number \checkmark Ra ²⁺ gains 2 electrons \rightarrow Ra/		
		Oxidation state goes from +2 in $\operatorname{Ra}Cl_2 \rightarrow 0$ in $\operatorname{Ra} \checkmark$	2	[3]
15.	(i)	effervescence/bubbles ✓ Ra disappears/dissolves ✓	2	
	(ii)	8-14 🗸	1	[3]
16.	CaCo (or C	O ₃ reacts with (or neutralises) HCl \checkmark CaCO ₃ + HCl in an equation)		
	CaC	$O_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2 \checkmark$		
	(corr	ect equation would score both marks)		[2]

17. Strontium reacts with oxygen/strontium oxide forms/SrO forms ✓
2Sr + O₂ → 2SrO /
Sr + ½ O₂ → SrO ✓

[2]

[5]

18.	(i)	In Sr, oxidation number = $0 \checkmark$ In Sr(OH) ₂ , oxidation number = (+)2 \checkmark OR	
		Oxidation number increases from $Sr \rightarrow Sr(OH)_2 \checkmark$ by 2 \checkmark	2
	(ii)	$0.438/87.6 = 5.00 \times 10^{-3} / 0.00500 \text{ mol}$	1
	(iii)	$0.00500 \times 24.0 = 0.120 \text{ dm}^3 \checkmark (\text{accept } 120 \text{ cm}^3)$	1
	(iv)	$0.00500 \times 1000/200 = 0.0250 \text{ mol dm}^{-3}$ 🗸	1

19. heat ✓ 1 (i) $\dots 3..$ SrO(s) + $\dots 2..$ Al(s) $\rightarrow \dots 3..$ Sr(s) + $\dots Al_2O_3(s)$ (ii) 1 Molar mass of $SrCO_3 = 87.6 + 12 + 16x3 = 147.6 \text{ g mol}^{-1}$ (iii) Mass SrCO₃ required = $100 \times 147.6/87.6 = 168$ tonnes \checkmark Mass of ore needed = mass $SrCO_3 \times 100/2$ $= 168 \times 100/2 = 8400$ tonnes / 8425 tonnes (from 168.484931507) ✓ (answer depends on rounding) 5000 tonnes is 50×100 tonnes: worth 1 mark 3 98% waste produced which must be disposing of /made (iv) into something worthwhile/CO₂ being removed by something sensible/ 1 any sensible comment \checkmark [6]

(i)Answer is inclusive of 9 - 14 inclusive
$$\checkmark$$
1(ii)Ca(s): $1s^22s^22p^63s^23p^64s^2 \checkmark$ 2Ca(OH)_2(aq): $1s^22s^22p^63s^23p^6 \checkmark$ 2

20.

[3]

21. barium atoms are larger \checkmark

barium atoms have more shielding \checkmark

this outweighs the increase in nuclear charge \checkmark

barium electrons are lost more easily /less energy required /ionisation energy decreases ✓

[4]